Liquid coverage of rotating discs
A comparison of solvers and approaches

Bernhard F.W. Gschaider1 Petr Vita2 Doris Prieling3
Helfried Steiner3

1ICE Strömungsforschung
Leoben, Austria

2Department Mineral Resources and Petroleum Engineering, Montanuniversität
Leoben, Austria

3Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology,
Austria

5th OpenFOAM TM Workshop, Chalmers, Gothenburg
Outline

1 Introduction
 Problem description
 Approximate solution
 Published benchmark cases

2 VoF-approach
 Overview
 Exploiting rotational symmetry
 Dynamic meshing

3 FAM-approach
 Overview
 Implementation
 Results
 Summary

4 Conclusion
 Results summary
 Acknowledgements

Summary VoF
Wafer cleaning

- Important step during the production of semiconductor silicon-wafers
 - But the same happens during etching etc
- Two contradicting goals:
 - Wafer should be fully wetted
 - Minimum amount of liquid
- Goal of this project is to develop a simulation tool that helps with the planning of this process
Simulation features

- Liquid film
 - Thin (compared to the size of the geometry)
 - On a rotating surface
- Liquid jet impinges on the surface
 - Not necessarily on the center
 - Position and strength change during time
- Transport of reactants in the liquid
- All this should be achieved in a reasonable time-frame
Asymptotic solutions

Nusselt solution

\[\text{Ro}^2 \ll 1, \text{Ro}^2 = \left(\frac{\bar{u}}{\omega r} \right)^2 \]

\[\nu \frac{\partial^2 v_r}{\partial z^2} = -r\omega^2 \]

Film thickness

\[\delta = \left(\frac{3}{2\pi} \frac{Q\nu}{\omega^2 r^2}\right)^{\frac{1}{3}} \]

Asymptotic solution

Rauscher et al. (1973) [RKC73]:

\[\frac{\delta}{h_0} = r^{* - 2/3} + \left(\frac{62}{315} - \frac{2}{9} F^{-1} \right) r^{* - 10/3} + O(r^{-4}) \]

with \(F^{-1} = \frac{2\pi g\nu}{3\omega^2 Q} \), \(r^* = r/l \)

characteristic lengths: \(l = \left(\frac{9Q^2}{4\pi^2\omega^2} \right)^{\frac{1}{4}} \) and \(h_0 = \left(\frac{\nu}{\omega} \right)^{\frac{1}{2}} \)

leading order balance

higher order correction

Viscous–Resistance

Centrifugal–Force

Inertial–Force

Gravitational–Force

Coriolis–Force
Ozar et al.

- Rotating disc
- Inlet at the center
 - Not by a jet, but through a collar
 - This allows a good control over the flow properties
- Lots of experimental data

Problem description

- Rotating disc
- Inlet at the center
 - Not by a jet, but through a collar
 - This allows a good control over the flow properties
- Lots of experimental data
Charwat et al

- Impinging jet on the center of the disc
 - Closer to the actual application
 - Still axi-symmetric
- Described in [CKG72]
- Analytical solution in [KK09]
The Volume of Fluid Method

- Multiphase solver for 2 liquids with a high density difference
- Volume fraction of one liquid is solved for
- Implemented in OpenFOAM™ in the interFoam-family of solvers
 - For details look elsewhere
Different implementations

- There are 3 schemes to calculate VoF in Fluent:
 - HRIC High resolution interface capturing
 - QUICK Quick Upwind Interpolation for Convective Kinematics
 - PLIC Geometric reconstruction
- “only” one implementation in OpenFOAM™ γ-differencing scheme Implementation in interFoam and others
- If not otherwise noted the same grid was used in Fluent and OpenFOAM™ for all calculations
Motivation

- Both sets of experiments were set up in an axially symmetric fashion
- Minimizes amount of computational time
 - More calculations possible
- Of course assumes that all the effects are symmetric
- Slightly different implementation:
 - **OpenFOAM** Needs a modified mesh and special boundary conditions
 - **Fluent** Modifies all the differential operators but uses a 2D-mesh
Comparing a case (200 rpm, 7 l/min)
Comparing a case (200 rpm, 7 l/min) - time average

Test case 1b
\(\omega=200\text{rpm}, Q=7\text{lpm}, \nu_L=1\times10^{-6}\text{m}^2/\text{s}, \theta=10\text{deg}\)

- FLUENT PLIC
- FLUENT HRIC
- FLUENT QUICK
- OpenFOAM Inter-\(\gamma\)
- Nusselt solution
- Asympt. Rauscher 1973
- Exp. Thomas 1991

Temporal averages:
- good agreement with experimental data
- QUICK \(\approx\) Inter-\(\gamma\) (smooth)
- approach asymptotic solution in outer region
Comparing another case (300 rpm, 3 l/min)

Test case 1:
ω = 300 rpm, Q = 3 l/min, ν = 0.66 x 10^{-6} m^2/s, θ = 10 deg

![Graphs showing instantaneous film thickness after t=2s](image1.png)

![Graphs showing temporal film thickness variation, monitor at r=180mm](image2.png)
Comparing another case (300 rpm, 3 l/min) - time average

- Exp. data overpredicted
- HRIC, Inter-γ: enhanced waviness
- Smaller Ro^2 ($\omega \uparrow$, $Q \downarrow$)

Test case 1f
$\omega = 300$ rpm, $Q = 3$ l/min, $\nu_L = 0.66 \times 10^{-6}$ m2/s, $\theta = 10$ deg

FLUENT PLIC
FLUENT HRIC
FLUENT QUICK
OpenFOAM Inter-γ
Nusselt solution
Asympt. Rauscher 1973
Exp. Ozar 2003
Hydraulic jump on stationary disc (7 l/min)
Comparison impinging jet (Charwat 1)

Film thickness – test case C1
Q=0.3 lpm, \(\omega = 60 \text{rpm} \), Re=1156

<table>
<thead>
<tr>
<th>FLUENT PLIC, (\alpha)-mean</th>
<th>FLUENT HRIC, (\alpha)-mean</th>
<th>FLUENT QUICK, (\alpha)-mean</th>
<th>OpenFOAM Inter-(\gamma)</th>
<th>Kim & Kim 2009</th>
<th>Exp. Charwat (data fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mesh: 71160 cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nozzle inflow included</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\delta \) [mm]

\(r \) [mm]
Comparison impinging jet (Charwat 2)

Film thickness – test case C2
Q=0.18lpm, ω=180rpm, Re=694

FLUENT PLIC
FLUENT HRIC
FLUENT QUICK
OpenFOAM Inter−γ
Kim & Kim 2009
Exp. Charwat (data fit)

mesh: 71160 cells
nozzle inflow included
MOVIE: Impinging jet

2d Rotating Disc w/ Jet
Case c2: 180rpm, Re=694

Time: 0.10
Motivation and model setup

- Full 3D was considered
 - Large meshes due to different length-scales (wafer diameter vs. film thickness)
 - Grid near the wafer determines the resolution of the film
- The solution: interDyMFoam
 - Finer grid resolution at the surface of the liquid
- The Ozar case was calculated
 - Coarse blockMesh
MOVIE: Dynamically meshed case
Comparison of the VoF-approaches

- All approaches and solvers give similar time averaged results which are consistent with the experimental data
 - Results are mesh-independent, except for PLIC
 - Instantaneous values differ significantly
- Axial-symmetric solution fast, but limited in physical phenomena it can tackle
- 3D with mesh refinement takes a long time
 - Even then the surface film is only 3–5 computational cells “thick”
Motivation

- Disadvantages of the VoF-approach:
 - **Axial-symmetric** Can not simulate a jet that does not impinge on the center of the disc
 - **3D-dynamic** Takes too long for reasonable grid resolutions

- The simulation should be able to
 - Simulate arbitrary processes
 - Computational times of months for processes that last in the order of a minute are unacceptable
The Finite Area Method

- Specialisation of the FVM to flows on surfaces
 - Possible applications: wall-films
- Implementation by H. Jasak and Z. Tukovic in OpenFOAM™
 - Not in the “official” version. Only in 1.5-dev
- Only a demo-solver that models the transport-equation on a prescribed velocity field available
- Equations are solved on a boundary-patch of the volume mesh
 - Solution of the volume (impinging jet) can be used as a source term
The simplified wafer model

- Based on the shallow-water equations
- The height of the fluid-film takes a dual role as “Density” of the fluid and Pressure
- Equations are solved using an adapted PISO-approach
- Implemented using the finiteArea-approach
The modified shallow water equations

- Liquid velocity:
 \[
 \frac{\partial \vec{u}}{\partial t} + \vec{u} \nabla \vec{u} + g \nabla h - \frac{\sigma}{\rho} \nabla \nabla^2 h = \nu \nabla^2 \vec{u} + \frac{\nu}{h^2} (\vec{u}_{wafer} - \vec{u})
 \]
 - With added surface tension
 - and motion of the wafer

- Liquid height
 \[
 \frac{\partial h}{\partial t} + h \nabla \vec{u} + \vec{u} \nabla h = 0
 \]
Replaying the Ozar case

- Need for validation of the solver:
 - Significantly differs from the VoF-approach
- Ozar case chosen for validation because:
 - It is easy to set up and well defined
 - Especially the inner boundary condition
 - For the Charwat case (and application) the impinging jet is modelled by a source term in the continuity equation
 - Experimental and computational data exists
Film height and liquid velocity with FAM

Time: 2.000
Quantitative comparison of the approaches
MOVIE: Transient covering of a wafer

Time: 14.400000
Summary of the results

- Two different solvers were compared
- Two well-documented experimental cases were investigated
- A variety of different solutions to the cases were taken
 - Asymptotic solution
 - Axial-symmetric solution using VoF
 - Full 3D-solution of the VoF
 - A special solver using the FAM

- All approaches give similar results
- Potentially best results (not surprisingly) would be given by the full 3D-solution
- Usable for the actual application is the FAM-approach
Acknowledgements

- This work is part of the project RoWaFloSim which is funded by Austrian Research Promotion Fund within the ModSim-programme

- The industrial sponsor and user of this work is the Lam Research AG (http://www.lamrc.com/)

- This work would not have been possible without the people who brought us OpenFOAM™, especially Henry Weller and Hrvoje Jasak

- No dams were hurt during the making of this study
The End

Thanks for listening!

Questions?
Previous work

