Constructive Algebra in Functional Programming and Type Theory

Anders Mörtberg
Linear algebra

- Solving systems of linear equations

\[
\begin{align*}
3x + 2y - z &= 1 \\
2x - 2y + 4z &= -2 \\
-x + \frac{1}{2}y - z &= 0
\end{align*}
\]

- Many methods to solve: Gauss elimination, Cramers rule, etc...

- Solution lies in a field, e.g. \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \).
What about \(\mathbb{Z} \)?

\[
\begin{align*}
\begin{cases}
x + 3y - 2z &= 5 \\
3x + 5y + 6z &= 7 \\
2x + 4y + 3z &= 8
\end{cases}
\end{align*}
\]

\(\mathbb{Z} \) is not field, what about other integral domains?
Abstract algebra

► Study properties and patterns of mathematical concepts

► Generalize and consider problems for algebraic structures instead of concrete instances

► Algebraic theories: monoids, groups, rings, fields, vector spaces, modules...
Constructive algebra

- Advanced algebra rely on nonconstructive reasoning

- Example: The existence of maximal and prime ideals

- Question: How much of classical algebra can be made constructive?
Generalized linear algebra

- Drop assumption of field

- Coherent rings - Solve homogeneous systems

- Given a vector M there exist a matrix L such that $ML = 0$ and

$$MX = 0 \iff \exists Y. \ X = LY$$
class IntegralDomain a ⇒ Coherent a where
 solve :: Vector a → Matrix a

propCoherent :: (Coherent a, Eq a) ⇒ Vector a → Bool
propCoherent m = (solve m) `isSolution` m
Properties of coherent rings

- Coherence $\rightarrow MX = 0$ where $M \in R^{n \times m}$ solvable

- Ideal intersection computable \leftrightarrow Coherence

- To prove coherence show how to compute $I \cap J$
Three coherence proofs

- Bézout domains
- Prüfer domains
- Polynomial rings
Noetherianity

- Noetherian: **All** ideals are finitely generated

- Not suitable for constructive mathematics since it relies on quantification over all subsets of the ring
Bézout domains

- Non-Noetherian principal ideal domains
- All \textbf{finitely generated} ideals are principal
- Examples: \mathbb{Z}, $k[x]$
class IntegralDomain a ⇒ BezoutDomain a where
 toPrincipal :: Ideal a → (Ideal a,[a],[a])

 \((\langle t \rangle, us, vs) = \text{toPrincipal} \langle a_1,\ldots,a_n \rangle \)

 \[
 t = a_1 u_1 + \cdots + a_n u_n \\
 a_i = tv_i
 \]
Coherence

- Given ideals $I = \langle a \rangle$ and $J = \langle b \rangle$

 \[I \cap J = \langle \text{lcm}(a, b) \rangle \]

- $I \cap J$ computable \rightarrow Coherent!
Examples in \(\mathbb{Z} \)

- Compute principal ideal from \(\langle 4, 6 \rangle \)

\[
> \text{toPrincipal (Id [4,6])}
\]
\[
(\langle 2 \rangle, [-1,1], [2,3])
\]

- Intersection of \(\langle 2 \rangle \) and \(\langle 3 \rangle \)

\[
> \text{Id [2] 'intersectionB' Id [3]}
\]
\[
<6>
\]
Examples in \mathbb{Z}

- Solving the system

\[
\begin{align*}
 x + 3y - 2z &= 0 \\
 3x + 5y + 6z &= 0
\end{align*}
\]

```r
> solveMxN (M [Vec [1,3,-2], Vec [3,5,6]])
[ 7,0]
[-3,0]
[-1,0]
```

- The solution (except for the trivial) is

\[
\begin{align*}
 x &= 7 \\
 y &= -3 \\
 z &= -1
\end{align*}
\]
Prüfer domains

- Non-Noetherian Dedekind domains
- Simple first order description
 \[\forall x \, y. \exists u \, v \, w. \quad ux = vy \land (1 - u)y = wx \]
- Examples: Bézout domains, algebraic extensions and curves
Implementation

class IntegralDomain a ⇒ PruferDomain a where
calcUVW :: a → a → (a,a,a)

propCalcUVW :: (PruferDomain a, Eq a) ⇒ a → a → Bool
propCalcUVW x y = u <-> x ≡ v <-> y &&
 (one <-> u) <-> y ≡ w <-> x

where (u,v,w) = calcUVW x y
Examples

- \(\mathbb{Z}[\sqrt{-5}]: a + b\sqrt{-5} \text{ where } a, b \in \mathbb{Z} \)

- \(k[x, y] \text{ with } y^2 = 1 - x^4: a + b\sqrt{1 - x^4} \text{ with } a, b \in k[x] \)
Sketch of coherence proof

- Principal localization matrix for the ideal \(\langle x_1, \ldots, x_n \rangle \)

\[
\begin{align*}
\sum a_{ii} &= 1 \\
 a_{lj}x_i &= a_{li}x_j \quad \forall i, j, l \in \{1, \ldots, n\}
\end{align*}
\]

- Property

\[
\langle x_1, \ldots, x_n \rangle \langle a_1j, \ldots, a_nj \rangle = \langle x_j \rangle
\]
Sketch of coherence proof

- Property
 \[IJ = (I \cap J)(I + J) \]

- Implies
 \[IJ(I + J)^{-1} = \langle a \rangle (I \cap J) \]
Polynomial ring

- $k[x_1, \ldots, x_n]

- $\frac{1}{2}xz + xy^2 - x^2z^3 \in \mathbb{Q}[x, y, z]$
Gröbner bases

- Division in $k[x_1, \ldots, x_n]$ depend on the order of divisors

 \[
 x^2 / [x + y, x] = (x - y)(x + y) + 0 \cdot x + y^2
 \]

 \[
 x^2 / [x, x + y] = x \cdot x + 0 \cdot (x + y) + 0
 \]

- Gröbner bases are the “well behaved” ideals in $k[x_1, \ldots, x_n]$. Division of any element in the ideal by the generators give the same result regardless of the order of the divisors.

- Buchberger algorithm
Coherence of $k[x_1, \ldots, x_n]$

- Let I and J be ideals in $k[x_1, \ldots, x_n]$
- Introduce t greater than all x_1, \ldots, x_n
- Compute using Gröbner bases:
 \[(tl + (1 - t)J) \cap k[x_1, \ldots, x_n] = I \cap J\]
Examples

- Intersection in $k[x, y]$

$$\langle x^2 y \rangle \cap \langle xy^2 \rangle$$

> Id [x^2*y] 'intersectionMP' Id [x*y^2]
<\langle x^2y^2\rangle
Discussion

- Limitations
- Further work
- Conclusions
Questions?