
Monitoring Evolution of Code Complexity in Agile/Lean
Software Development

A Case Study at Two Companies

Vard Antinyan1), Miroslaw Staron1), Wilhelm Meding2), Per Österström3), Henric
Bergenwall3), Johan Wranker3), Jörgen Hansson4) Anders Henriksson4)

Computer Science and Engineering 2) Chalmers | 1) University of Gothenburg

3) Ericsson AB, Sweden4) AB Volvo, Sweden
SE 412 96 Gothenburg

Abstract. One of the distinguishing characteristics of Agile and Lean software development is
that software products “grow” with new functionality with relatively small increments. Contin-
uous customer demands of new features and the companies’ abilities to deliver on those de-
mands are the two driving forces behind this kind of software evolution. Despite the numerous
benefits there are a number of risks associated with this kind of growth. One of the main risks is
the fact that the complexity of the software product grows slowly, but over time reaches scales
which makes the product hard to maintain or evolve. The goal of this paper is to present a
measurement system for monitoring the growth of complexity and drawing attention when it
becomes problematic. The measurement system was developed during a case study at Ericsson
and Volvo Group Truck Technology. During the case study we explored the evolution of size,
complexity, revisions and number of designers of two large software products from the telecom
and automotive domains. The results show that two measures needed to be monitored to keep
the complexity development under control - McCabe’s complexity and number of revisions.

Keywords: complexity; metrics; risk; Lean and Agile software development; code;
potentially problematic; correlation; measurement systems;

1 Introduction
Actively managing software complexity has become an important aspect of continu-
ous software development in large software products. It is generally believed that
software products developed in a continuous manner are getting more and more com-
plex over time, and evidence shows that the rising complexity drives to decreasing
quality of software [1-3]. The continuous increase of code base and incremental in-
crease of complexity can lead to large, virtually unmaintainable source code if left
unmanaged.

A number of methods have been suggested to measure various aspects of soft-
ware complexity, e.g. [4-10], accompanied with a number of studies indicating how
adequately the proposed methods can relate to software quality. One of the well-
known complexity measures, McCabe’s cyclomatic complexity has been shown to be
a good quality indicator although it does not reveal all aspects of complexity [11-14].

Despite the considerable amount of research conducted about the influence of
complexity on software quality, little results can be found on how complexity influ-
ences on a continuously developed software product and how to effectively monitor
small yet continuous increments of complexity in growing products. Therefore a ques-

tion remains how the previously established methods can be as efficiently used for
software quality evaluation:

How to monitor complexity changes effectively when delivering feature incre-
ments to the main code branch in the product codebase?
The aim of this research is to develop methods and tool support for actively mon-

itoring increments of complexity and drawing the attention of product managers, pro-
ject leaders, quality responsible and the teams to the potentially problematic trends of
growing complexity. In this paper we focus on the level of self-organized software
development teams who often deliver code to the main branch for further testing,
integration with hardware and ultimate deployment to end customers.

We address this question by conducting a case study at two companies which
develop software according to Agile and Lean principles. The studied companies are
Ericsson AB in Sweden which develops telecom products and Volvo Group Truck
Technology which develops trucks under four brands – Volvo, Renault, Mack and UD
Trucks.

Our results show that using a number of complementary measures of complexity
and development velocity – McCabe’s complexity and number of revisions per week
– support teams in decision making, when delivering potentially problematic code to
the main branch. By saying potentially problematic we mean that there is a tangible
chance that the delivered code is fault prone or difficult to understand and maintain.
Monitoring trends in these variables effectively draws attention of the self-organized
Agile teams to a handful of functions and files which are potentially problematic. The
handful of functions are manually assessed, and before the delivery the team formu-
lates the decision whether they indeed might cause problems. The initial evaluation in
two ongoing software development projects shows that using the two measures indeed
draws attention to the most problematic functions.

2 Related Work

2.1 Continuous Software Evolution
A set of measures useful in the context of continuous deployment can be found in the
work of Fritz [15] in the context of market driven software development organization.
The metrics presented by Fritz measure such aspects as continuous integration pace or
the pace of delivery of features to the customers. These metrics complement the two
indicators presented in this paper with a different perspective important for product
management.

The delivery strategy, which is an extension of the concept of continuous de-
ployment, has been found as one of the three key aspects important for Agile software
development organizations in a survey of 109 companies by Chow and Cao [16]. The
indicator presented in this paper is a means of supporting organizations in their transi-
tion towards achieving efficient delivery processes.

Ericsson’s realization of the Lean principles combined with Agile development
was not the only one recognized in literature. Perera and Fernando [17] presented
another approach. In their work they show the difference between the traditional and
Lean-Agile way of working. Based on our observations, the measures and their trends
at Ericsson were similar to those observed by Perera and Fernando.

2.2 Related Complexity Studies
Gill and Kemerer [8] propose another kind of cyclomatic complexity metric – cy-
clomatic complexity density and they show its usefulness as a software quality indica-
tor. Zhang and Zhang [18] developed a method based on lines of code measure, cy-
clomatic complexity number and Halstead’s volume to predict the defects of a soft-
ware component. Two other studies provided evidence that files having large number
of revisions are defect prone and hard to maintain [19], [20].

2.3 Measurement Systems
The concept of an early warning measurement system is not new in engineering.
Measurement instruments are one of the cornerstones of engineering. In this paper we
only consider computerized measurement systems – i.e. software products used as
measurement systems. The reasons for this are: the flexibility of measurement sys-
tems, the fact that we work in the software field, and similarity of the problems – e.g.
concept of measurement errors, automation, etc. An example of a similar measure-
ment system is presented by Wisell [21] where the concept of using multiple meas-
urement instruments to define a measurement system is also used. Although differing
in domains of applications these measurement systems show that concepts which we
adopt from the international standards (like [22]) are successfully used in other engi-
neering disciplines. We use the existing methods from the ISO standard to develop the
measurement systems for monitoring complexity evolution.

Lowler and Kitchenham [23] present a generic way of modeling measures and
building more advanced measures from less complex ones. Their work is linked to the
TychoMetric [24] tool. The tool is a very powerful measurement system framework,
which has many advanced features not present in our framework (e.g. advanced ways
of combining metrics). A similar approach to the TychoMetric’s way of using metrics
was presented by Garcia et al. [25]. Despite their complexity, both the TychoMetric
tool and Garcia’s approach can be seen as alternatives in the context of advanced data
presentation or advanced statistical analysis over time.

Meyer [26, pp. 99-122] claims that the need for customized measurement sys-
tems for teams is one of the most important aspects in the adoption of metrics at the
lowest levels in the organization. Meyer’s claims were also supported by the require-
ments that the customization of measurement systems and development of new ones
should be simple and efficient in order to avoid unnecessary costs in development
projects. In our research we simplify the ways of developing Key Performance Indica-
tors exemplified by a 12-step model of Parmenter [27] in the domain of software de-
velopment projects.

3 Design of the Case Study
This case study was conducted using action research approach [28-30] where the re-
searchers were part of the company’s operations and worked directly with product
development units of the companies. The role of Ericsson in the study was the devel-
opment of the method and its initial evaluation, whereas the role of Volvo Group
Truck Technology was to evaluate the method in a new context.

3.1 Ericsson
The organization and the project within Ericsson, which we worked closely with,
developed large products for the mobile telephony network. The number of the devel-
opers in the projects was up to a few hundreds1. Projects were executed according to
the principles of Agile software development and Lean production system, referred to
as Streamline development (SD) within Ericsson [31]. In this environment, different
development teams were responsible for larger parts of the development process
compared to traditional processes: design teams (cross-functional teams responsible
for complete analysis, design, implementation, and testing of particular features of the
product), network verification and integration testing, etc.

The needs of the organization had evolved from metric calculations and presen-
tations (ca. 7 years before the writing of this paper) to using predictions, simulations,
early warning systems and handling of vast quantities of data to steer organizations at
different levels and providing information from teams to management.

3.2 Volvo Group Truck Technology (GTT)
The organization which we worked with at Volvo Group developed Electronic Con-
trol Unit (ECU) software for trucks for such brands like Volvo, Renault, UD Trucks
and Mack. The collaborating unit developed software for two ECUs and consisted of
over 40 designers, business analysts and testers at different levels. The process was
iterative, agile, involving cross functional teams.

The company used measures to control the progress of its projects, to monitor
quality of the products and to collect data semi-automatically, i.e. automatically gath-
ering of data from tools with the manual analysis of the data. The metrics collected at
the studied unit fall into the categories of contract management, quality monitoring
and control, predictions and project planning. The intention of the unit was to build a
measurement system to provide stakeholders (like project leaders, product and line
managers or the team) with the information about the current and predicted status of
their products.

3.3 Process
According to the principles of action research we adjusted the process of our research
with the operations of the company. We worked closely with project teams with dedi-
cated designers, architects and managers being part of the research team. We conduct-
ed the study according to the following pre-defined process:
• Obtaining access to the source code of the products and their different releases
• Calculate complexity of all functions in the code
• Identify functions which changed complexity through 4 main releases
• Identify functions which changed complexity in 5 service releases between the two

main releases
• Identify drivers for complexity changes in a subset of these functions
• Add new measures to the study:

─ Complexity per file
─ # revisions – to explore files which were changed often
─ # designers – to explore files which were changed by many designers in parallel

1 The exact size of the unit cannot be provided due to confidentiality reasons.

─ # Number of lines of code (size) – to explore large files and functions
• Correlate measures to explore their dependencies
• Develop a measurement system (according to ISO 15939) to monitor the potential-

ly problematic files.
• Monitor and evaluate the product during two releases

The above process was used during the development of the method at Ericsson
and replicated at Volvo Group Truck Technology.

3.4 Units of Analysis
During our study we analyzed two different products – software for a telecom product
at Ericsson and software for one electronic control unit from Volvo GTT from the
automotive domain.

Ericsson: The product was a large telecommunication product composed by over
one million lines of code with several tens of thousands C/C++ functions. Most of the
source code was developed using C. The product had a few releases per year with a
number of service releases in-between them. All versions of the source code of the
product including the main and service releases were stored in version control system,
IBM/Rational ClearCase. The product was a mature telecommunication product with
a stable customer base. The product has been in development for a number of years.

The measures specified in the previous section were collected from different
baseline revisions of the source code in ClearCase. In order to increase the internal
validity of data collection and the quality of data we communicated closely with a
reference group during bi-weekly meetings over a period of 8 months. The reference
group consisted of 2 senior designers, one operational architect, one research engineer
from the company, one manager and one metric team leader. The discussions consid-
ered the suitability of measures, measurement methods and functions (according to
ISO/IEC 15939), validity of results and effectiveness of our measurement system.

Volvo GTT: The product was an embedded software system serving as one of the
main computer nodes for a product line of trucks. It consisted of a few hundred thou-
sand lines of code and several thousand C functions. The version control system is
ClearCase. The software product had tight releases every 6-8 weeks. The analyses that
were conducted were replications of the case study at Ericsson under the same condi-
tions and using the same tools. The results were communicated with designers of the
software product after the data was analyzed.

At both companies we developed measurement systems for monitoring the files
and functions that can be risk driving when merging new code into the main branch.
We defined the risk of merging a newly developed or a maintained function to main
code base as a chance that the merged code would introduce new faults or would be
noticeably more difficult to understand and maintain.

3.5 Measures in the Study

Table 1 presents the measures which we used in our study and their definitions:
Table 1. Metrics and their definitions

Name of measure Abbre-
viation

Definition

Number of non-
commented lines of
code

NCLOC The lines of non-blank, non-comment source code in a function

McCabe’s cy-
clomatic complexi-
ty of a function

M The number of linearly independent paths in the control flow
graph of a function, measured by calculating the number of 'if',
'while', 'for', 'switch', 'break', '&&', '||' tokens

McCabe’s cy-
clomatic complexi-
ty of a file

File M The sum of all functions’ M in a file

McCabe’s cy-
clomatic complexi-
ty delta of a func-
tion

ΔM The increase or decrease of M of a function during a specified
time interval. We register the file name, class name (if available)
and function name in order to identify the same function and
calculate its complexity change in different releases.

McCabe’s cy-
clomatic complexi-
ty delta of a file

File ΔM The increase or decrease of File M during a specified time inter-
val

Number of revi-
sions of a file

NR The number of check-ins of files in a specified ClearCase
branch and its all sub-branches in a specified time interval

Number of design-
ers of a file

ND The number of developers that do check-in of a file on a speci-
fied ClearCase branch and all of its sub-branches during a speci-
fied time interval

Complexity of the
most complex func-
tion in a file

Max M f The complexity number M of the most complex function in a
file

3.6 Focus Group
During this study we had the opportunity to work with a reference group at Ericsson
and a designer at Volvo GTT. The aim of the reference group was to support the re-
search team with expertise in the product domain and to validate the intermediate
findings as prescribed by the principles of Action research. The group interacted with
researchers on a bi-weekly meeting basis for over 8 months. At Ericsson the reference
group consisted of:
• One product manager with over 10 years of experience and over 5 years of experi-

ence with Agile/Lean software development
• One measurement program/team leader with over 10 years of experience with

software development and over 5 years of experience with Agile/Lean at Ericsson
• Two designers with over 6 years of experience in telecom product development.
• One operational architect with over 6 years of experience
• One research engineer with over 20 years of experience in telecom product devel-

opment
At Volvo GTT we worked with one designer who had the knowledge about the prod-
uct and over 10 years of experience with software development at the company.

4 Results and analysis

4.1 Evolution of the Studied Measures Over Time
We measured M for 4 main and 5 service releases at Ericsson and for 4 releases for
the product at Volvo GTT. The results showed there are many new complex functions
introduced as part of service releases. We observed that a large number of functions
change the argument list during development. Many functions had long list of argu-
ments which meant that the designers need to add or remove an argument or change
the argument name to resolve a specific task. Thus the majority of the functions that

has been included as “new” in the statistics were actually old functions, which have
changed argument’s list. The designers agreed that these functions may introduce
risks but with considerably less exposure than if these functions were indeed newly
developed. Hence we disregarded the argument’s list of functions in our measure-
ment. Figure 1 shows the complexity evolution of functions in 5 service releases of
the telecom product. Each line on the figure represents a C/C++ function.

Figure 1. Evolution of complexity for functions with large complexity delta for one release

and subsequent service releases in Telecom product
Measuring the evolution of McCabe’s complexity M through releases in this manner
resulted in:
• Observation that it is the newly developed functions which drive complexity in-

crease between two major releases, as shows in Table 2.
• Observation that the majority of functions that are created complex keep the com-

plexity at the same level over many releases – e.g. see Figure 1.

Figure 2. Evolution of complexity for functions with large complexity delta for four re-

leases in product ECU of trucks
Figure 2 shows the complexity development of ECU of trucks for 4 releases.

The trends presented in Figure 2 are similar to the trends in Figure 1 and the
number of functions in the diagram reflects the difference in size of the products.

Rel_5Rel_4Rel_3Rel_2Rel_1

0

Releases

M

complexity evolution over time

rel_4rel_3rel_2rel_1

0

Releases

M

complexity evolution over time

Table 2 presents the results of complexity change between two service releases. The
dashes in the table, under old M column indicate that the functions did not exist in the
previous measurement point. The table shows that there are few functions that are
new and already complex. In this particular measurement interval there are also 5
functions that were removed from the release. These functions are indicated by dashes
under new M column (not shown in Figure 1). The results were consistent for all ser-
vice releases for the telecom product, irrespective if there was a new functionality
development or correction caused by customer’s feedback. As opposed to the telecom
product the number of newly introduced complex functions was dependent on wheth-
er a new end-to-end feature is implemented for truck. In Figure 2 we can see that for
ECU software after the first release the number of functions with increased complexi-
ty is 5, whereas from second and third release there are many of them.

Table 2. Top functions of telecom product with highest complexity change between two
service releases

In both products new complex functions appeared over time regardless the de-

velopment time period. We investigated the reasons for high complexity of newly
introduced functions in each release (both service and main) and unchanged complex-
ity of existing functions. We observed that both companies assure that the most com-
plex functions are maintained by the most skilled engineers to reduce the risks of
faultiness. One of these functions was function 4 in Table 2, which between two re-
leases increased the complexity significantly from an already high level. We observed
the change of complexity for both long time intervals (between main releases) and for
short time intervals (one week). Table 3 shows how the complexity of functions
changes over weeks. The initial complexity of functions is provided under column M
in the table (the real numbers are not provided for confidentiality reasons).We can see
the week numbers on the top of the columns, and every column shows the complexity
growth of functions in that particular week. Under ΔΜ column we can see the overall
delta complexity per function that is the sum of weekly deltas per function.

The fact that the complexity of these functions fluctuates irregularly was interest-
ing for the designers, as the fluctuations indicate active modifications of functions,
which might be due to new feature development or represent defect removals with
multiple test-modify-test cycles. Functions 4 and 6 are such instances illustrated in
Table 3.

file name function name old M new M Δ Μ
file 1 function 1 25 - -25
file 2 function 2 83 - -83
file 2 function 3 26 - -26
file 3 function 4 57 90 33
file 4 function 5 27 - -27
file 5 function 6 22 - -22
file 5 function 7 - 25 25
file 6 function 8 - 30 30
file 6 function 9 - 51 51
file 7 function 10 - 23 23
file 8 function 11 - 26 26
file 9 function 12 - 26 26
file 10 function 13 - 22 22
file 11 function 14 - 27 27

Table 3. Visualizing complexity evolution of functions over weeks

4.2 Correlation Analyses
When adding new measures to our analyses we needed to evaluate how the measures
relate to each other by performing correlation analyses. However, in order to correlate
the measures we need to define all the measures for the same entity (e.g. for a file or
for a function, see Table 1). The correlation analysis for the telecom product is pre-
sented in Table 4.

Table 4. Correlation of measures for telecom product
 File M File Δ Μ Max ΔΜ NR ND
NCLOC 0.9 0.27 0.33 0.56 0.47
File M 0.28 0.32 0.48 0.41
File Δ Μ 0.77 0.24 0.25
Μax Δ Μ f 0.35 0.37
NR 0.92

The correlations which are over 0.7 are in boldface, since it means that the corre-
lated variables characterize the same aspect of the code. Table 5 presents the Pearson
correlation coefficients between measures for the ECU for a truck. The correlations
are visualized using correlograms in Figure 3 and Figure 4.

Table 5. Correlation of measures for ECU of truck
 File M File Δ Μ Max ΔΜ NR ND
NCLOC 0.9 0.43 0.48 0.61 0.38
File M 0.48 0.5 0.68 0.4
File Δ Μ 0.84 0.13 0.19
Μax ΔΜ f 0.3 0.23
NR 0.46

The tables show that the M change is weakly correlated with NRs for both prod-
ucts. This was expected by the designers as the files with the most complex functions
are usually maintained by certain designers and do not need many changes. The files
with smaller complexity are not risky since they are easy to be modified. The design-
ers noted that the really risky files are those which contain multiple complex functions
that change often.

The strong correlation visible in the tables and diagrams above of NCLOC and
M has been manifested by a number of other researchers previously [32], [33], [8].

 Figure 3. Correlogram of measures for telecom software
The original complexity definition is for a function as a measurement unit, thus we
did correlation analyses on function’s level. The results were:
• Correl. (M; NCLOC) = 0.76 telecom product
• Correl. (M; NCLOC) = 0.77 truck’s software product

The correlation coefficient was weaker compared to correlation between the
complexity of a file, which was caused by the fact that we measure the complexity of
each file as a sum of complexities of all of its functions. This means that larger files
with functions of small complexity will result in higher correlation. Designers claimed
that there are many files having moderately complex functions that are solving inde-
pendent tasks, which did not mean that the file is risky. This resulted in that we used
the measure of complexity delta of functions rather than files in our measurement
system as a complementary base measure.

Another important observation was the strong correlation between the number of
designers and the number of revisions for telecom product Figure 3. Although at the
beginning of this study the designers in the reference group believed that a developer
of a file might check-in and check-out the file several times which probably is not a
problem.

Figure 4. Correlogram of measures for ECU software

They assumed that large number of revisions itself is not as large problem as
when many different designers change the file in parallel. This parallel development
most likely increase the risk of being uninformed of one another’s activities between
different developers. The high correlation between File ΔM and max ΔΜ shows that
the complexity change of the file is mainly due to complexity change of the most
complex function in that file. A later observation showed that most of the files contain
only one or two complex functions along with many other simple ones.

4.3 Design of the Measurement System
Based on the results that we obtained from investigation of complexity evolution and
correlation analyses, we designed two indicators based on M and NR measures. These
indicators capture the evolution of complexity and highlight potentially problematic
files over time. These indicators were designed according to ISO/IEC 15959. An ex-
ample definition of one indicator is presented in Table 6.

Table 6. ISO/IEC 15939 definition of the complexity growth indicator

Information
Need

Monitor cyclomatic complexity evolution over development time

Measurable
Concept

Complexity development of delivered source code

Relevant Enti-
ties

Source code

Attributes McCabe’s cyclomatic complexity of C/C++ functions
Base Measures Cyclomatic complexity number of C/C++ functions – M
Measurement
Method

Count cyclomatic number per C/C++ function according to the algorithm
in CCCC tool

Type of meas-
urement meth-
od

Objective

Scale Positive integers
Unit of meas-
urement

Execution paths over the C/C++ function

Derived Meas-
ure

The difference of cyclomatic number of a C/C++ function in one week
development time period

Measurement
Function

Subtract old cyclomatic number of a function from new one:
ΔM = M(week) – M(week-1)

Indicator Complexity growth: The number of functions that exceeded McCabe
complexity of 20 during the last week

Model Calculate the number of functions that exceeded cyclomatic number 20
during last week development period

Decision Crite-
ria

If the number of functions that have exceeded cyclomatic number 20 is
different than 0 then it indicates that there are functions that have ex-
ceeded established complexity threshold. This suggests the need of re-
viewing those functions, finding out the reasons of complexity increase
and refactoring if necessary

The other indicator is defined in the same way: the number of files that had NR > 20
during last week development time period.

The measurement system was provided as a gadget with the necessary information
updated on a weekly basis (Figure 5). The measurement system relies on two previous
studies carried out at Ericsson [34, 35].

Figure 5. Information product for monitoring ΔM and NR metrics over time

For instance the total number of files with more than 20 revisions since last week
is 5 (Figure 5). The gadget provides the link to the source file where the designers can
find the list of files or functions and the color-coded tables with details.

We visualized the NR and ΔM measures using tables as depicted in Table 3. Pre-
senting the ΔM and NR measures in this manner enabled the designers to monitor
those few most relevant files and functions at a time out of several thousands. As in
Streamline development the development team merged builds to the main code
branch in every week it was important for the team to be notified about functions with
drastically increased complexity (over 20). This table drew the attention of designers
to the potentially problematic functions on a weekly basis – e.g. together with a team
meeting.

5 Threats to Validity
In this paper we evaluate the validity of our results based on the framework described
by Wohlin et al. [36]. The framework is recommended for empirical studies in soft-
ware engineering.

The main external validity threat is the fact that our results come for an action re-
search. However, since two companies from different domains (telecom and automo-
tive) were involved, we believe that the results can be generalized to more contexts
than just one company.

The main internal validity threat is related to the construct of the study and the
products. In order to minimize the risk of making mistakes in data collection we
communicated with reference groups at both companies to validate the results.

The limit 20 for cyclomatic number established as a threshold in this study does
not have any firm empirical or theoretical support. It is rather an agreement of skilled
developers of large software systems. We suggest that this threshold can vary depend-
ent on other parameters of functions (block depth, cohesion, etc.). The number 20 is a
preliminary established number taking into account the number of functions that can
be handled on weekly basis by developers.

The main construct validity threats are related to how we match the names of
functions for comparison over time. The measurement has been in the following way:
We measured the M complexity number of all functions for two consequent releases,
registering in a table function name and file name that the function belongs to. We
register the class name of the functions also if it is a C++ function. Then we compare

the function’s, file’s and class’ names of registered functions for two releases. If there
is a function that has the same registered names in both releases we consider that they
are the same functions and calculate the complexity number variance for them.

Finally the main threat to conclusion validity is the fact that we do not use inferen-
tial statistics to monitor relation between the code characteristics and project proper-
ties, e.g. number of defects. This was attempted during the study but the data in defect
reports could not be mapped to individual files, this jeopardizing the reliability of
such an analysis. Therefore we chose to rely on the most skilled designers’ perception
of how fault-prone and unmaintainable code is delivered.

6 Conclusions
In Agile and Lean software development quick feedbacks on developed code and its
complexity is crucial. With small software increments there is a risk that the complex-
ity of units of code or their size can grow to unmanageable extensions through small
increments.

In this paper we explored how complexity changes by studying two software
products – one telecom product at Ericsson and one software for electronic control
unit at Volvo GTT. We identified that in short periods of time a few out of tens of
thousands functions have significant complexity increase. In large products software
development teams need automated tools to identify these potentially problematic
functions. We also identified that the self-organized teams should be able to make the
final assessment whether the “potentially” problematic is indeed problematic.

By analyzing correlations we found that it is enough to use two measures –
McCabe complexity and number of revisions – to draw attention of the teams and to
designate files as “potentially” problematic.

The automated support for the teams was provided in form of a MS Sidebar gadg-
et with the indicators and links to statistics and trends with detailed complexity devel-
opment. The method was validated on a set of historical releases.

In our further work we intend to extend our validation to products under devel-
opment and evaluate which decisions are triggered by the measurement systems. We
also intend to study how the teams formulate the decisions and monitor their imple-
mentation.

Acknowledgment
The authors thank the companies for their support in the study. This research has been
carried out in the Software Centre, Chalmers, University of Gothenburg and Ericsson
AB, Volvo Group Truck Technology.

References
[1] B. Boehm, "A view of 20th and 21st century software engineering," in Proceedings of the

28th international conference on Software engineering, 2006, pp. 12-29.
[2] T. Little, "Context-adaptive agility: managing complexity and uncertainty," Software, IEEE,

vol. 22, pp. 28-35, 2005.
[3] J. Bosch and P. Bosch-Sijtsema, "From integration to composition: On the impact of

software product lines, global development and ecosystems," Journal of Systems and
Software, vol. 83, pp. 67-76, 1// 2010.

[4] S. Henry and D. Kafura, "Software structure metrics based on information flow," Software
Engineering, IEEE Transactions on, pp. 510-518, 1981.

[5] T. J. McCabe, "A complexity measure," Software Engineering, IEEE Transactions on, pp.
308-320, 1976.

[6] B. Curtis, "Measuring the psychological complexity of software maintenance tasks with the
Halstead and McCabe metrics," IEEE Transactions on Software Engineering, vol. SE-5, p.
96.

[7] M. H. Halstead, Elements of software science vol. 19: Elsevier New York, 1977.
[8] G. K. Gill and C. F. Kemerer, "Cyclomatic complexity density and software maintenance

productivity," Software Engineering, IEEE Transactions on, vol. 17, pp. 1284-1288, 1991.
[9] R. P. L. Buse and W. R. Weimer, "A metric for software readability," in Proceedings of the

2008 international symposium on Software testing and analysis, 2008, pp. 121-130.
[10] Y. Wang, "On the Cognitive Complexity of Software and its Quantification and Formal

Measurement," International Journal of Software Science and Computational Intelligence
(IJSSCI), vol. 1, pp. 31-53, 2009.

[11] N. Nagappan, T. Ball, and A. Zeller, "Mining metrics to predict component failures," in
Proceedings of the 28th international conference on Software engineering, 2006, pp. 452-
461.

[12] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel, "Early quality
prediction: A case study in telecommunications," Software, IEEE, vol. 13, pp. 65-71, 1996.

[13] B. Ramamurthy and A. Melton, "A synthesis of software science measures and the
cyclomatic number," Software Engineering, IEEE Transactions on, vol. 14, pp. 1116-1121,
1988.

[14] M. Shepperd and D. C. Ince, "A critique of three metrics," Journal of Systems and
Software, vol. 26, pp. 197-210, 9// 1994.

[15] T. Fitz. (2009). Continuous Deployment at IMVU: Doing the impossible fifty times a day.
Available: http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-imvu-
doing-the-impossible-fifty-times-a-day/

[16] T. Chow and D.-B. Cao, "A survey study of critical success factors in agile software
projects," Journal of Systems and Software, vol. 81, pp. 961-971, 2008.

[17] G. I. U. S. Perera and M. S. D. Fernando, "Enhanced agile software development - hybrid
paradigm with LEAN practice," in International Conference on Industrial and Information
Systems (ICIIS), 2007, pp. 239-244.

[18] H. Zhang, X. Zhang, and M. Gu, "Predicting defective software components from code
complexity measures," in Dependable Computing, 2007. PRDC 2007. 13th Pacific Rim
International Symposium on, 2007, pp. 93-96.

[19] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto, "Software quality analysis
by code clones in industrial legacy software," in Software Metrics, 2002. Proceedings. Eighth
IEEE Symposium on, 2002, pp. 87-94.

[20] R. Moser, W. Pedrycz, and G. Succi, "A comparative analysis of the efficiency of change
metrics and static code attributes for defect prediction," in Software Engineering, 2008.
ICSE'08. ACM/IEEE 30th International Conference on, 2008, pp. 181-190.

[21] D. Wisell, P. Stenvard, A. Hansebacke, and N. Keskitalo, "Considerations when Designing
and Using Virtual Instruments as Building Blocks in Flexible Measurement System

http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/

Solutions," in IEEE Instrumentation and Measurement Technology Conference, 2007, pp. 1-
5.

[22] International Bureau of Weights and Measures., International vocabulary of basic and
general terms in metrology = Vocabulaire international des termes fondamentaux et
généraux de métrologie, 2nd ed. Genève, Switzerland: International Organization for
Standardization, 1993.

[23] J. Lawler and B. Kitchenham, "Measurement modeling technology," IEEE Software, vol.
20, pp. 68-75, 2003.

[24] Predicate Logic. (2007, 2008-06-30). TychoMetrics. Available:
http://www.predicatelogic.com

[25] F. Garcia, M. Serrano, J. Cruz-Lemus, F. Ruiz, M. Pattini, and ALARACOS Research
Group, "Managing Software Process Measurement: A Meta-model Based Approach,"
Information Sciences, vol. 177, pp. 2570-2586, 2007.

[26] Harvard Business School, Harvard business review on measuring corporate performance.
Boston, MA: Harvard Business School Press, 1998.

[27] D. Parmenter, Key performance indicators : developing, implementing, and using winning
KPIs. Hoboken, N.J.: John Wiley & Sons, 2007.

[28] A. Sandberg, L. Pareto, and T. Arts, "Agile Collaborative Research: Action Principles for
Industry-Academia Collaboration," IEEE Software, vol. 28, pp. 74-83, Jun-Aug 2011 2011.

[29] R. L. Baskerville and A. T. Wood-Harper, "A Critical Perspective on Action Research as a
Method for Information Systems Research," Journal of Information Technology, vol. 1996,
pp. 235-246, 1996.

[30] G. I. Susman and R. D. Evered, "An Assessment of the Scientific Merits of Action
Research," Administrative Science Quarterly, vol. 1978, pp. 582-603, 1978.

[31] P. Tomaszewski, P. Berander, and L.-O. Damm, "From Traditional to Streamline
Development - Opportunities and Challenges," Software Process Improvement and Practice,
vol. 2007, pp. 1-20, 2007.

[32] G. Jay, J. E. Hale, R. K. Smith, D. Hale, N. A. Kraft, and C. Ward, "Cyclomatic
complexity and lines of code: empirical evidence of a stable linear relationship," Journal of
Software Engineering and Applications (JSEA), 2009.

[33]M. Shepperd, "A critique of cyclomatic complexity as a software metric," Software
Engineering Journal, vol. 3, pp. 30-36, 1988.

[34] M. Staron, W. Meding, G. Karlsson, and C. Nilsson, "Developing measurement systems:
an industrial case study," Journal of Software Maintenance and Evolution: Research and
Practice, vol. 23, pp. 89-107, 2011.

[35] M. Staron and W. Meding, "Ensuring reliability of information provided by measurement
systems," in Software Process and Product Measurement, ed: Springer, 2009, pp. 1-16.

[36] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslèn,
Experimentation in Software Engineering: An Introduction. Boston MA: Kluwer Academic
Publisher, 2000.

http://www.predicatelogic.com/

	1 Introduction
	2 Related Work
	2.1 Continuous Software Evolution
	2.2 Related Complexity Studies
	2.3 Measurement Systems

	3 Design of the Case Study
	3.1 Ericsson
	3.2 Volvo Group Truck Technology (GTT)
	3.3 Process
	3.4 Units of Analysis
	3.5 Measures in the Study
	3.6 Focus Group

	4 Results and analysis
	4.1 Evolution of the Studied Measures Over Time
	4.2 Correlation Analyses
	4.3 Design of the Measurement System

	5 Threats to Validity
	6 Conclusions
	References

